Extreme Learning Machine Weight Optimization using Particle Swarm Optimization to Identify Sugar Cane Disease

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Medical Dataset Classification: A Machine Learning Paradigm Integrating Particle Swarm Optimization with Extreme Learning Machine Classifier

Medical data classification is a prime data mining problem being discussed about for a decade that has attracted several researchers around the world. Most classifiers are designed so as to learn from the data itself using a training process, because complete expert knowledge to determine classifier parameters is impracticable. This paper proposes a hybrid methodology based on machine learning ...

متن کامل

Fault Diagnosis of Power Transformers using Kernel based Extreme Learning Machine with Particle Swarm Optimization

To improve the fault diagnosis accuracy for power transformers, this paper presents a kernel based extreme learning machine (KELM) with particle swarm optimization (PSO). The parameters of KELM are optimized by using PSO, and then the optimized KELM is implemented for fault classification of power transformers. To verify its effectiveness, the proposed method was tested on nine benchmark classi...

متن کامل

Parameters Selection of Kernel Based Extreme Learning Machine Using Particle Swarm Optimization

The generalization performance of kernel based extreme learning machine (KELM) with Gaussian kernel are sensitive to the parameters combination (C, γ). The best generalization performance of KELM with Gaussian kernel is usually achieved in a very narrow range of such combinations. In order to achieve optimal generalization performance, the parameters of KELM with Gaussian kernel were optimized ...

متن کامل

An approach to Improve Particle Swarm Optimization Algorithm Using CUDA

The time consumption in solving computationally heavy problems has always been a concern for computer programmers. Due to simplicity of its implementation, the PSO (Particle Swarm Optimization) is a suitable meta-heuristic algorithm for solving computationally heavy problems. However, despite the simplicity, the algorithm is inefficient for solving real computationally heavy problems but the pr...

متن کامل

portfolio optimization using particle swarm optimization method

the markowitz’s optimization problem is considered as a standard quadratic programming problem that has exact mathematical solutions. considering real world limits and conditions, the portfolio optimization problem is a mixed quadratic and integer programming problem for which efficient algorithms do not exist. therefore, the use of meta-heuristic methods such as neural networks and evolutionar...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Information Technology and Computer Science

سال: 2019

ISSN: 2540-9824,2540-9433

DOI: 10.25126/jitecs.201942116